
Towards Semantic Modelling of Cultural Historical Data

In this paper a practical method is presented for creating documentation of cul-
tural historical targets using an event-centric core ontology. By using semantic
documentation templates and an XML-based query language, a domain specific
documentation model can be created and flexible user interfaces can be built eas-
ily for accessing and editing the documentation. Keywords. ontologies, cultural
historical documentation, information retrieval

Introduction

The most challenging feature of cultural historical data is its great variety. This
variety sets challenges for documentation, information retrieval and user inter-
face design in cultural historical data systems. Also, lately the question of in-
formation integration and especially that of cross-cultural information exchange
have been raised in organisations such as museums, libraries and archives that
collect and maintain cultural historical data. To solve some important problems
in the field of cultural historical documentation(Bekiari et al., 2005), semantic
technologies have been introduced. Conceptual Reference Model (later CRM)
is a formal ontology intended to facilitate integration, mediation and interchange
of heterogeneous cultural heritage information(Crofts et al., 2006). The model
was created by the International Committee for Documentation (CIDOC) of the
International Council of Museums (ICOM) on empirical bases from real-world
datasets which reflect the special needs of the cultural historical field. CRM
also has the status of being an ISO-standard(ISO, 2006). In this paper, an event-
centric, CRM-based method for modelling cultural historical data is presented.
The method is designed to help cultural historical documentation work by pro-
viding tools for semantically aware documentation of cultural historical items
and events. In order to demonstrate method, a software called IDA-framework
was implemented.

1. CIDOC-CRM and event-centric documentation

CIDOC-CRM consists of 86 classes and 143 properties, and it is meant to be ex-
tended by users for more specific domains. An important aspect of the CRM
class hierarchy is separation between temporal entities and persistent items (Fig-
ure 20). It allows modelling of history as events, with actors participating in those
events. Events can, for example, produce or modify persistent items, or persistent
items can be used in the events.

1.1.Event-centric model of history

The tradition of documentation in the cultural historical field has been very item-
centric(Cameron, 2007). The documentation is organised around physical items,
which makes documentation of immaterial objects challenging or even impossi-
ble. In the event- centric approach, the root of documentation process is not nec-



FIGURE 20 A partial CICOC-CRM class hierarchy

essarily a physical item. For example, when a hand-painted painting is modelled
according to CIDOC-CRM, the painting has no direct property called author or
artists. Instead, the painting is said to have been produced by a production event,
which is carried out by one or more persons. Similarly, if painting is sold, dam-
aged, or restored, these processes are modelled as individual events that affect
the state of the painting.

The event-centric approach has several advantages compared to traditional,
item- based approaches. First, events provide a semantically meaningful way of
describing links between physical things and actions of human beings(Doerr and
Kritsotaki, 2006). Second, the event- centric model allows a very flexible structure
for an individual record. Events describe the history of an item, and new events
can be added at any time. In practise, this means that the related documentation
can be very detailed or just on a general level and that the level of details can
be decided by the person creating the documentation. Therefore, documentation
can be constructed based on the qualities of the target of documentation instead
of some rigid structure.

Using explicit events also simplifies data structure design, because events
have a common structure: someone did something somewhere during a certain
time period. With this formulation, it is possible to represent, for example, a
creation of an artwork, a construction of a building or having a scientific semi-
nar. Because events are individual records, they split documentation into smaller
units, therefore making it semantically more precise and more accessible.

The third, and, from the perspective of documentation, very important ben-
efit is that using explicit events in documentation makes events themselves doc-
umentable as units. For example, a design process of a building or restoration of
a painting can be documented as an individual record. In the traditional item-
centric approach this would need specific fields for every event type. To be able
to define the cultural context of an item, it is beneficial if the cultural object can be
separated from the physical carrier object(s). For example, in the case of architec-
tural drawings, it can be said that the immaterial architectural design is carried
out by physical drawings. This way the actual design can be documented inde-



FIGURE 21 User interface created based on the documentation template

pendently from the physical documents. This separation also helps when mod-
elling the relation between industrially made objects and conceptual designs. In-
dustrially made furniture is produced by following a certain procedure or design.
The design is documented only once even if there are several physical copies of
the furniture.

However, sometimes it is easier to use a shorter path and model the rela-
tions in a shorter way. CIDOC-CRM also allows more simple modelling. For
example, one way to model the relation between an architectural drawing and
its target is to say that the drawing shows a building. Although this is not se-
mantically accurate, since the drawing illustrates the design of the building and
not the building itself, it can be useful when the initial data does not contain the
necessary information for the design or when there are no resources to make full
mappings.

2. IDA-framework

IDA-framework is a simple and flexible tool for making semantically-aware, event-
centric documentation(Häyrinen, 2009). The core ontology of the framework is
based on CIDOC- CRM. However, the purpose is not to produce full CIDOC-
CRM mappings but to provide a semantically meaningful base that follows CIDOC-
CRM’s principles and conventions. IDA-framework is aimed specially for small
memory organisations like local museums and highly specialized museums whose
collections are densely linked. IDA-framework uses events explicitly in its doc-



umentation model. The complexity of the CIDOC-CRM is hidden from the end
user, and the domain specific documentation structure is defined by semantic
documentation templates(Häyrinen, 2008).

2.1.Semantic documentation template

Since CRM does not suggest what to document in any specific case, there must be
a mechanism that guides users in making new records(Doerr and Iorizzo, 2008).
The idea of a semantic documentation template is to provide a record-type spe-
cific documentation frame that can be defined by the organisation responsible
for documentation. The template defines a typical case for a record, including
default properties and default events. More precisely, the documentation tem-
plate maps parts of thesauri to a partial domain ontology that is build on top of
CIDOC-CRM.
<Building >

< i s _ i d e n t i f i e d _ b y t a b l e =" a p p e l l a t i o n " required ="1" >
<name required ="0" />

</ i s _ i d e n t i f i e d _ b y >
<has_note t a b l e =" note " required ="0" a c t i o n =" input " >

<message required ="0" width ="200" />
</has_note >
<was_produced_by c l a s s =" Production " required ="1" >

<Production >
<has_time−span t a b l e =" time_span " required ="1" a c t i o n =" input " >

<s t a r t _ d a y required ="0" />
<start_month required ="0" />
< s t a r t _ y e a r required ="1" width ="5" />

</has_time−span >
<carr ied_out_by c l a s s =" Actor " required ="0" a c t i o n =" s e a r c h _ c r e a t e " />
<u s e d _ s p e c i f i c _ t e c h n i q u e c l a s s =" Archi tec tura l_Des ign " required ="0" />

</Production >
</was_produced_by >
< h a s _ c u r r e n t _ l o c a t i o n c l a s s =" Place " />

</Building >

The documentation template does not define any user interface elements. A user
interface can be freely created for the template concerned. Figure 21 shows an
input form generated by Javascript in the browser. The template helps the user
to create an initial target that can be later further refined.

2.2.Semantic query language

For performance reasons, IDA-framework is implemented with the help of a re-
lational database system which excludes the use of Xquery or SPARQL as a query
language.

The native query language for relational databases is SQL. While SQL is a
well-known and established query language, it is also complex and it requires
information about the internal data structure. Another problem with SQL is that
queries can get very complex with the recursive database structures that IDA-
framework uses. For this project, a new query language called IDA-QL was de-
veloped. IDA-QL is very verbal, and it should be meaningful without any prior
knowledge about query languages. The following query will give the IDs of all



FIGURE 22 IDA-framework system architecture

persons who were born in 1953 and have "Lin*" in their name ("Linus" or "Lin-
tunen", for example):
<?xml vers ion = " 1 . 0 " encoding ="UTF−8" ?>
<search >

<Person >
< i s _ i d e n t i f i e d _ b y >

<name>Lin*</name>
</ i s _ i d e n t i f i e d _ b y >
<was_born>

<Bir th >
<has_time−span>

< s t a r t _ y e a r >1953</ s t a r t _ y e a r >
</has_time−span>

</Bir th >
</was_born>

</Person >
</search >

The purpose of IDA-QL is to provide platform independent information retrieval
and data manipulation language for cultural historical data. It is a meta query
language that is translated to SQL queries. IDA-QL is based on XML, and it
operates on classes and properties defined by the ontology. This also means that
if the ontology is translated to another language, then also the query language
gets translated.

2.3.Implementation

IDA-framework server is written in PHP and it uses a relational database through
the MDB2-abstraction layer. The ontology is defined by an RDFS file, and the
documentation templates are described in an XML file. Communication between
the server and the client is done with XML API. Client applications can be written



FIGURE 23 Maps and architectural drawings mapped to CRM.

with any programming language as long it can send http calls and is able to parse
XML files. The overall implementation is very simple. There are fewer than 6000
lines of PHP code in the server application.

3. Case study: University Museum of Jyväskylä

Demonstrations were made with the collections of the University Museum of
Jyväskylä. Two kinds of items were selected from the collections: maps and ar-
chitectural drawings. There were about 200 maps and 100 architectural draw-
ings in the museum’s collection at the time of the experiment. The museum
also has a collection management tool called DUO. Direct export form DUO to
IDA-framework was not possible because of the differences in the documenta-
tion models. Instead, data was exported from DUO to an HTML file, which was
then parsed with Javascript. The input was then manually validated and added
to IDA-framework.

3.1.Domain Analysis based on CIDOC-CRM

A map depicts some geographical region produced by an individual person or
organisation. In terms of CIDOC-CRM, map is a Physical Man-made Object pro-
duced by Production event and the Production event is carried out by an Actor.
In this case, a simple model was used for modelling the authorship of the map.
The producer of the physical map is not necessarily the creator of the map, but in



this case it is the assumption in the initial data. In addition, there is a possibility
to define several map subtypes, a road map or a tourist map, among them. As
stated earlier, a simple way to model a relation between an architectural drawing
and its target is to say that the drawing shows a certain building. While useful
in some cases, this model is not semantically accurate. The architectural draw-
ing does not actually present the building, it merely presents the architectural
design, which is an immaterial object. This relationship can be modeled with the
conceptual class Architectural Design that is carried by the physical object – the
drawing. In this case, a class called Architectural Design was derived from the
CRM class Design_or_Procedure. This design was then linked to a production
event of the building (Figure 23). This kind of modelling solves also the problem
of how to document designs that were never carried out, in other words, plans
that do not represent any physical building. The instance of Architectural Design
exists even if there are no buildings constructed by following the design. The con-
cept of architectural design also serves to organise drawings, because individual
documents can be grouped as carriers of a single, named design.

3.2. Demo Applications

In the map application, the user can browse through maps by region, by map
maker or by map type. The contents of these navigation panels are created by
IDA-QL-queries. The following query gives the names of all persons and organi-
sations who have produced a map:
<search >

<Actor >
<performed>

<Production >
<has_produced >

<Map/>
</has_produced >

</Production >
</performed>

</Actor >
</search >

The query returns a list of actors. This list is then parsed by Javascript and dis-
played in a webpage. When the user clicks a certain name in the list, the following
query is used to retrieve information:
<search r e s u l t = ’ r e s u l t ’ >

<Map>
<was_produced_by>

<Production >
<carried_out_by >

<Actor id = ’1 ’ />
</carried_out_by >

</Production >
</was_produced_by>

</Map>
< r e s u l t >

< d e p i c t s/>
<has_type/>
<was_produced_by>

<carr ied_out_by />
</was_produced_by>

</ r e s u l t >



</search >

The query selects all the maps produced by the actor in question. The properties
inside the result tag define what properties are included in the response XML. The
XML response is then parsed with Javascript and the actual display is rendered.
Architectural drawings can be viewed by buildings, by designs, by architects and
by campus areas. Since this application is about architectural drawings, not about
buildings, only the buildings that are presented in architectural drawings should
be listed. The following query returns the list of buildings that are depicted by an
architectural plan:
<Building >

<is_depicted_by >
< A r c h i t e c t u r a l _ P l a n />

</is_depicted_by >
</Building >

There is no concept of architect in the ontology used. However, the concept of
architect can be defined by an IDA-QL query as a person who has produced a
architectural drawing and thus a list of architects can be created.

4. Discussion

The case material was quite limited, and therefore it is too early to draw final con-
clusions. However, the material shows that the method can be used successfully
in the field of cultural historical data, and a semantically rich Web 2.0 applica-
tion can be built entirely with Javascript using an XML interface provided by
IDA-framework. Modifications of the data structure do not require changes in
the application code, which makes the system more flexible than other relational
databases. The main focus of the software development was in the server side
and on developing a flexible way to build user interfaces. Therefore, no actual
usability tests were conducted at this point.

5. Conclusion

A practical method for CRM based documentation of cultural historical targets
was presented. By hiding the complexity of the ontology with documentation
templates, the system adapts semantic technologies in the field of cultural histor-
ical documentation. With a simple query language, it is possible to build flexi-
ble and browseable user interfaces without expertise needed for other semantic
query languages.

Acknowledgements

This work has been funded by the Department of Art and Culture studies at the
University of Jyväskylä, by the Finnish Cultural Foundation, and by Kone Foun-
dation.




